Gepaarter vs. ungepaarter T-Test: Unterschied und Vergleich

Wir leben in einer Zeit, in der Informationen mit Hilfe von Statistiken mathematisch ermittelt werden können. Das Studium der Statistik ist jedoch, wie es scheint, nicht nur das von Fakten und Zahlen.

Statistische Inferenz besteht aus der Verwendung von Statistiken, um Entscheidungen über die Parameter einer Population auf der Grundlage von Zufallsstichproben zu treffen. Die Implementierung der statistischen Inferenz beinhaltet das Testen von Hypothesen und spricht darüber, wie dieses Verfahren von Statistikern eingesetzt wird, um die Annahme eines Populationsparameters einfach zu akzeptieren oder abzulehnen. U

Key Take Away

  1. Ein gepaarter t-Test ist eine statistische Methode, die verwendet wird, um die Mittelwerte zweier verwandter Stichproben zu vergleichen, z. B. Messungen, die von denselben Personen zu unterschiedlichen Zeiten oder unter unterschiedlichen Bedingungen durchgeführt wurden.
  2. Ein ungepaarter t-Test, auch bekannt als t-Test bei unabhängigen Stichproben, vergleicht die Mittelwerte zweier nicht verwandter Stichproben, z. B. Messungen von zwei Gruppen von Personen.
  3. Die Wahl zwischen einem gepaarten und einem ungepaarten t-Test hängt von der Art der Daten und der Forschungsfrage ab, wobei gepaarte t-Tests für verwandte Stichproben und ungepaarte t-Tests für unabhängige Stichproben verwendet werden.

Gepaarter T-Test vs. ungepaarter T-Test

Ein Paar T-Test ist ein statistischer Test, der verwendet wird, um die Mittelwerte zweier verwandter Stichproben zu vergleichen; Dabei werden Proben gepaart oder in irgendeiner Weise angepasst. Die gepaart T-Test wird verwendet, wenn es eine natürliche Paarung zwischen zwei Proben gibt. Ein ungepaartes T-Test ist ein statistischer Test, der verwendet wird, um die Mittelwerte zweier unabhängiger Stichproben zu vergleichen. Der ungepaarte t-Test wird verwendet, wenn es keine natürliche Paarung zwischen den beiden Stichproben gibt.

Gepaarter t-Test vs. ungepaarter t-Test

 

Vergleichstabelle

VergleichsparameterGepaarter T-TestUngepaarter T-Test
BedeutungDer gepaarte T-Test, auch bekannt als T-Test mit wiederholten Stichproben, bestimmt die Unterscheidung zwischen den beiden Mittelwerten desselben Subjekts.Ungepaarte T-Tests, auch als unabhängige T-Tests oder Student's T-Test bekannt, bestimmen die beiden Mittelwertgruppen unterschiedlicher/nicht verwandter Fächer.
Homogenität der VarianzenBeim gepaarten T-Test sind die Varianzen der beiden mittleren Gruppen nicht gleich.Beim ungepaarten T-Test sind die Varianzen der beiden mittleren Gruppen gleich.
Auswirkungen/AuswirkungenGepaarte T-Tests behandeln sehr geringfügige Fehler, da der Test nur zwischen zwei ähnlichen Gruppen durchgeführt wird.Ungepaarte T-Tests weisen im Vergleich zu gepaarten T-Tests etwas mehr Fehler auf, da der Experimentator von Variationen zwischen zwei verschiedenen Probanden betroffen wäre.
ErgebnisGepaarte T-Tests müssen keine großen Mengen an Beispieldaten zum Vergleich sammeln, dies spart sukzessive Geld und Zeit.Da ungepaarte T-Tests die Mittelwerte zweier unabhängiger Probanden vergleichen müssen, ist dies ein etwas teurerer und zeitaufwändigerer Prozess.
Pinne dies jetzt, um dich später daran zu erinnern
Das anpinnen

 

Was ist ein gepaarter T-Test?

Ein gepaarter t-Test, auch als korrelierter Paar-t-Test/gepaarter Stichproben-t-Test/abhängiger t-Test bezeichnet, ist ein statistisches Verfahren, das einen Test auf abhängige Variablen durchführt. Vor der Datenzuordnung wird ein paariger Test an ähnlichen Probanden durchgeführt, und zwei Tests werden vor und nach einer Behandlung durchgeführt.

Lesen Sie auch:  Süßester Tag vs. Valentinstag: Unterschied und Vergleich

Hypothese:

Die zwei Hypothesen unter gepaartem t-Test.

  1. Die Nullhypothese (H0): kein signifikanter Unterschied zwischen bestimmten Populationen, H0: μ1 = μ2
  2. Die Alternativhypothese (H1): Es gibt einen statistisch signifikanten Unterschied zwischen den beiden Populationsmittelwerten, der durch die Zurückweisung der Nullhypothese verursacht wird. H1: μ 1 ≠ μ2

Annahmen:

Der gepaarte Stichproben-t-Test macht die folgenden Annahmen:

  1. Die Unterschiede zwischen den ähnlichen Paaren folgen einer normalen Wahrscheinlichkeitsverteilung.
  2. Die Beobachtungen sollten unabhängig und identisch verteilt abgetastet werden.
  3.  Ein gepaarter t-Test wird schrittweise mit Hilfe von Verhältnissen oder Intervallen gemessen. Da T-Tests auf einer Normalverteilung basieren, müssen die Daten kontinuierlich und nicht diskret sein
  4. Die unabhängigen Variablen sollten aus zwei abhängigen/ähnlichen Gruppen bestehen.
gepaarter T-Test
 

Was ist der ungepaarte T-Test?

Ein ungepaarter t-Test, auch bekannt als t-Test bei unabhängigen Stichproben/t-Test bei zwei Stichproben, ist eine statistische Methode, die bestimmt, ob es einen signifikanten Unterschied zwischen den Mittelwerten zweier unabhängiger unabhängiger Gruppen gibt oder nicht. Zum Beispiel: Wenn Sie den durchschnittlichen Schlafzyklus von Personen vergleichen möchten, die nach Geschlecht gruppiert sind: männliche und weibliche Gruppen.

Hypothese für den unabhängigen t-Test:

Die Nullhypothese für den unabhängigen t-Test lautet, dass die Populationsmittelwerte der beiden unterschiedlichen Gruppen gleich sind:

H0:  μ1= μ2

Die Alternativhypothese wird akzeptiert, sobald die Nullhypothese abgelehnt wird, was bedeutet, dass die Mittelwerte der Grundgesamtheit nicht gleich sind

H1:  μ1 ≠ μ2

Um die Nullhypothese abzulehnen oder zu akzeptieren, ist ein Signifikanzniveau entscheidend. Dieser bestimmte Wert beträgt 0.05.

Annahmen:

  1. Die erste Annahme betrifft die Messskala – die gesammelten Daten sollten einer kontinuierlichen oder ordinalen Skala folgen.
  2. Die Daten sollten von einem zufällig ausgewählten Teil der Gesamtbevölkerung erhoben werden.
  3. Die Daten sollten eine normale, glockenförmige Verteilungskurve ergeben. Das Signifikanzniveau kann angegeben werden, wenn eine Normalverteilung angenommen wird.
  4. Es sollte eine massive Stichprobengröße verwendet werden.
  5. Varianz und Standardabweichung sollten für die abhängigen Variablen gleich sein.
Ungepaarter t-Test

Hauptunterschiede zwischen gepaartem T-Test und ungepaartem T-Test

  1. Gepaarte T-Tests bedeutet, die Differenz zwischen den beiden mittleren Gruppen abhängiger Probanden zu vergleichen. Zum Beispiel: der IQ von 5 Schülern vor und nach dem Training.
  2. Die Abweichung von Gepaarte T-Tests soll gleich sein. Da die Varianz gleich ist, ist auch die Standardabweichung für die beiden mittleren Gruppen gleich.
  3. Gepaarte T-Tests weist weniger Zufallsfehler auf, da es bei gepaarten T-Tests darum geht, die Abweichungen zwischen zwei Durchschnittsgruppen ähnlicher Versuchspersonen zu ermitteln, sodass sich der Experimentator nicht auf die individuellen Unterschiede konzentrieren muss.
  4. Gepaarte T-Tests spart viel Zeit und Geld für den Experimentator, da er keine großen Mengen an Probendaten finden muss, um die zwei ähnlichen mittleren Gruppen zu berechnen. Ungepaarte T-Tests sind etwas kostspieliger und zeitaufwändiger, da der Experimentator viele Daten finden müsste, um die beiden unabhängigen Mittelwertgruppen zu analysieren.
Lesen Sie auch:  Aktives vs. passives Lernen: Unterschied und Vergleich

Literaturhinweise
  1. https://libguides.library.kent.edu/SPSS/PairedSamplestTest
  2. https://libguides.library.kent.edu/SPSS/IndependentTTest
Eine Bitte?

Ich habe mir so viel Mühe gegeben, diesen Blogbeitrag zu schreiben, um Ihnen einen Mehrwert zu bieten. Es wird sehr hilfreich für mich sein, wenn Sie es in den sozialen Medien oder mit Ihren Freunden / Ihrer Familie teilen möchten. TEILEN IST ♥️

Möchten Sie diesen Artikel für später speichern? Klicken Sie auf das Herz in der unteren rechten Ecke, um in Ihrer eigenen Artikelbox zu speichern!

Über den Autor

Emma Smith hat einen MA-Abschluss in Englisch vom Irvine Valley College. Sie ist seit 2002 Journalistin und schreibt Artikel über die englische Sprache, Sport und Recht. Lesen Sie mehr über mich auf ihr Bio-Seite.