Differenza tra sequenza aritmetica e geometrica (con tabella)

Tutti voi dovete essere stati al cinema per guardare film con i vostri amici o familiari. Durante la prenotazione dei biglietti, hai mai notato il modo in cui normalmente vengono sistemati i posti a sedere al cinema? Il numero di posti nella fila precedente sarà sempre inferiore alla fila successiva di un numero specifico.

Questa disposizione dei posti è normalmente in una sequenza aritmetica. Quindi, si può dire che una sequenza che diminuisce o aumenta di un numero costante è nota come sequenza aritmetica. D'altra parte, una sequenza geometrica è qualcosa di completamente diverso. La maggior parte di voi ha giocato con qualche tipo di palla durante la sua infanzia.

Sia che tu usi un pallone da calcio o un pallone da basket, noterai che l'altezza alla quale rimbalza tende a diminuire ogni volta che colpisce il suolo. Questa diminuzione dell'altezza di rimbalzo avviene in una sequenza geometrica.

Quindi, si può dire che la sequenza geometrica è fondamentalmente una sequenza in cui ogni termine si moltiplica o si divide per lo stesso valore da un termine specifico al successivo. Il valore per cui un termine si divide o si moltiplica è noto come rapporto comune.

Aritmetica vs sequenza geometrica

Il differenza tra sequenza aritmetica e geometrica è che mentre una sequenza aritmetica ha la differenza tra i suoi due termini consecutivi rimane costante, una sequenza geometrica ha il rapporto tra i suoi due termini consecutivi rimane costante.

La differenza tra due termini consecutivi in una sequenza aritmetica è detta differenza comune. D'altra parte, il rapporto di due termini consecutivi in una sequenza geometrica è detto rapporto comune.

Tabella di confronto tra sequenza aritmetica e geometrica

Parametro di confrontoSequenza aritmeticaSequenza geometrica
DefinizioneÈ un elenco di numeri, in cui ogni nuovo termine si altera da un altro termine precedente di una quantità definita.È una sequenza di numeri in cui ogni nuovo termine viene calcolato moltiplicando per un numero diverso da zero e fisso.
Calcolato daAddizione o sottrazioneMoltiplicazione o Divisione
Identificato daUna differenza costante tra 2 termini successivi.Un rapporto comune tra 2 termini successivi.
ModuloForma lineareForma esponenziale

Cos'è la sequenza aritmetica?

Quando si parla di sequenza aritmetica o progressione aritmetica, ci si riferisce sostanzialmente a una sequenza di numeri diversi in cui la differenza tra 2 numeri consecutivi è sempre costante.

In questo tipo di sequenza, differenza significa il primo termine sottratto dal secondo termine. Se si considera una successione come 1, 4, 7, 10, 13…è una successione aritmetica in cui la differenza costante è 3.

Proprio come qualsiasi altra cosa in matematica, anche una sequenza aritmetica ha una formula. La formula utilizzata per trovare una sequenza aritmetica è a, a+d, a+2d, a+3d e così via. In questa formula, "a" è il primo termine e "d" è la differenza comune tra 2 termini consecutivi.

È importante sapere che il comportamento di una sequenza aritmetica dipende molto dalla differenza comune. Se la differenza comune o la "d" nella formula è positiva, i termini cresceranno in modo positivo. Tuttavia, se la differenza comune è negativa, i termini cresceranno in modo negativo.

Che cos'è una sequenza geometrica?

La sequenza geometrica o progressione geometrica in matematica sembra essere una sequenza di numeri diversi in cui ogni nuovo termine dopo il precedente viene calcolato semplicemente moltiplicando il termine precedente con un rapporto comune. Questo rapporto comune è un numero fisso e diverso da zero. Ad esempio, la sequenza 3, 6, 12, 24 e così via è una sequenza geometrica con il rapporto comune pari a 2.

Anche una sequenza geometrica ha una sua formula. La forma normale di una sequenza geometrica è nella forma a, ar, ar², ar³, ar4 e così via.

Quando hai bisogno di trovare l'n-esimo termine in una qualsiasi sequenza geometrica, la formula da usare è an = arn-1, dove sarà dato il rapporto comune “r” e il valore iniziale “a”. Ci sono alcuni fattori che dovresti ricordare quando si tratta di una sequenza geometrica. Se il rapporto comune è positivo, anche i termini saranno positivi.

Tuttavia, se il rapporto comune è negativo, i termini saranno alternati tra negativo e positivo. Se il rapporto comune è maggiore di 1, la crescita sarà in forma esponenziale verso l'infinito positivo o addirittura negativo. Se il rapporto comune è 1, la progressione sarà una sequenza costante.

Principali differenze tra sequenza aritmetica e geometrica

  1. Una sequenza aritmetica è una sequenza di numeri che viene calcolata sottraendo o aggiungendo un termine fisso al/dal termine precedente. Tuttavia, una sequenza geometrica è una sequenza di numeri in cui ogni nuovo numero viene calcolato moltiplicando il numero precedente per un numero fisso e diverso da zero.
  2. La differenza tra due termini consecutivi in una sequenza aritmetica è nota come differenza comune rappresentata da "d" e il numero con cui i termini si moltiplicano o si dividono in una sequenza geometrica è noto come rapporto comune rappresentato da "r".
  3. Quando si tratta di una sequenza aritmetica, la variazione è in forma lineare. D'altra parte, quando si tratta di una sequenza geometrica, la variazione è in forma esponenziale.
  4. In una sequenza aritmetica, i numeri possono progredire in modo positivo o negativo a seconda della differenza comune. Mentre in una sequenza geometrica non esiste una regola in quanto i numeri possono progredire alternativamente in modo positivo e negativo nella stessa sequenza.

Domande frequenti (FAQ) su aritmetica e sequenza geometrica

Perché si chiama sequenza geometrica?

Si chiama sequenza geometrica perché i numeri vanno da un numero all'altro immergendosi o moltiplicandosi per un valore simile.

Il numero diviso o moltiplicato in ogni fase della serie chiamato rapporto comune. Una serie geometrica è un insieme di figure che seguono una regola unica di uno schema.

Una sequenza aritmetica può essere anche geometrica?

In matematica, una serie aritmetica è definita come la sequenza in cui la varianza tra numeri consecutivi chiamata differenza comune è costante.

D'altra parte, la serie geometrica è dove il rapporto tra numeri successivi, noto come rapporto comune, è costante. Quindi, ciò significa che una sequenza non può essere sia geometrica che aritmetica.

Qual è la formula della serie geometrica infinita?

La sequenza geometrica infinita è definita come la totalità di una sequenza geometrica infinita. La sequenza non ha l'ultima cifra. Questo tipo di sequenza infinita include a1+a1r+a1r2 +a1r3+…. In questo caso, a1 si riferisce alla prima cifra mentre r si riferisce al rapporto comune.

Calcolerai la somma totale di una sequenza geometrica finita. Nel caso della sequenza geometrica infinita, una volta che il rapporto comune è superiore a uno, i termini della serie aumenteranno e quando si sommano numeri più grandi, sarà impossibile ottenere una risposta finale. L'unica risposta sarebbe l'infinito.

Diciamo che r (rapporto comune) è compreso tra -1 e 1/. Puoi ottenere la somma di una sequenza geometrica infinita. Cioè, la somma esiste per r <1.

La somma delle serie geometriche infinite che ha -1 <r<1 is calculated by:
S=a1/1-r

Cos'è A in una sequenza aritmetica?

Una sequenza aritmetica si riferisce alla serie di termini tale che una differenza tra due partecipanti successivi della serie è un termine costante per cui a nella sequenza aritmetica è il primo termine.

Come si trova l'ennesimo termine di una sequenza aritmetica?

È noto che i termini di una serie aritmetica aumentano per la differenza comune (d). Ad esempio, 2, 4, 6, 8, 10 è una progressione aritmetica e d=2.

La formula per ottenere l'ennesimo termine di questa sequenza aritmetica è 2n+1. Tipicamente, l'ennesimo termine di una sequenza aritmetica con un primo termine e una differenza comune è a+ (n-1) d.

Conclusione

Con l'aiuto di questa discussione dettagliata sulle differenze tra una sequenza aritmetica e una sequenza geometrica, dovresti esserne chiaro ormai. Se pensi che queste 2 sequenze non abbiano alcun uso nella vita reale, allora dovresti ricrederti. Entrambi hanno i loro usi e la loro importanza individuali nelle diverse vite quotidiane.

Le sequenze aritmetiche sono utilizzate in vari settori finanziari e possono rivelarsi piuttosto utili quando si tratta di calcolare i risparmi e gli incrementi finanziari personali. Tuttavia, anche una sequenza geometrica ha la sua giusta dose di usi. Viene utilizzato per calcolare i tassi di interesse forniti da diverse istituzioni finanziarie e anche per calcolare la crescita demografica di un paese.

Si vede spesso che gli studenti si confondono quando si tratta di decidere se una data sequenza è una sequenza aritmetica o una sequenza geometrica. Sebbene il calcolo di una sequenza aritmetica sia piuttosto semplice, la sfida principale risiede nel calcolo di una sequenza geometrica.

Riferimenti

  1. https://arxiv.org/pdf/1001.5055
  2. https://msp.org/pjm/1971/38-2/pjm-v38-n2-p05-s.pdf
x
2D vs 3D