ディープラーニングとサーフェスラーニング: 違いと比較

深さは、学生が何かを学習する際に通過するデータの実際の量です。

主要な取り組み

  1. 深層学習では、深いレベルで概念を理解して適用する必要がありますが、表面学習では、完全に理解することなく情報を記憶して再現する必要があります。
  2. 深層学習者は批判的思考と問題解決のスキルを身につけますが、表面学習者は複雑なタスクや独立した思考に苦労する可能性があります。
  3. 深層学習は長期的な知識の保持を促進しますが、表面学習は資料をすぐに忘れてしまう可能性があります。

深層学習 vs 表面学習

深層学習は、積極的に情報を収集し、学習資料を分析するプロセスであり、資料を理解するには深層学習が必要です。 表面学習は、概念を受動的に読んで、一般的な考えを獲得することによって、材料の一般的な考えを理解するプロセスです。

深層学習 vs 表面学習

深層学習は、研究対象の資料を積極的に収集および分析するプロセスです。

これは、できるだけ多くの内容をカバーしようとしながら、時間をかけずに学習対象の内容の概要を説明するプロセスです。 

比較表

比較のパラメータ深層学習表面学習
定義ディープラーニングとは、積極的に情報を収集し、学習資料を分析するプロセスです表面学習は、概念を受動的に読むことによって、学習教材の一般的な考えを理解するプロセスです
思考プロセス深層学習には批判的思考が必要表面学習中に受動的思考が存在する
ターゲット教材を完全に理解し、分析するために実施学習教材についての一般的な考えを得るために実行されます
学習過程研究対象のデータについて常に考え、反芻するトピックの概要を読んで理解するだけでよい
状況医師や科学者、その他の重要な環境の場合に最も多く観察されます。批判的思考が必要とされない日常の状況で観察される
後で思い出せるように今すぐピン留めする
これを固定する

ディープラーニングとは何ですか?

ディープラーニングは重要な学習プロセスであり、主な目的は学習内容を完全に理解するためにデータを継続的に収集、分析、反芻することです。

また読む:  動機と意図: 違いと比較

それは、概念、例、ケーススタディなど、学習する主題に関するすべてを理解するプロセスです。

前述の環境では、データの絶え間ない分析が重要な側面であり、研究分野で起こっているさまざまな変化すべてと連絡を取り合っています。

深い学習

表面学習とは?

表面学習は、概念を受動的に読むことによって、学習教材の一般的な考えを理解するプロセスです。

学習者は、主題を包括的に学習する前に、その主題の一般的な概念を理解しようとします。

このような状況では、新しい学習者は、主題を深く掘り下げる前に、主題についての一般的な理解を構築しようとします。

表面学習

深層学習と表面学習の主な違い

  1. 絶え間ない思考と反芻はディープラーニングの一部です。 Surface 学習では読み取りのみが行われます
  2. ディープラーニングは、医師、科学者、このような重要な環境で働く人々の間で一般的に観察されています。 表面学習は、批判的思考が必要とされない日常の状況で観察されます。
深層学習と表面学習の違い
参考情報
  1. https://books.google.com/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=deep+learning&ots=MNP0cmnIOT&sig=MLWtSt4PGAuLzzOd1KrOs9BpZ-M
  2. https://www.nature.com/articles/nature14539
  3. https://www.tandfonline.com/doi/abs/10.1080/096392897331587
  4. https://link.springer.com/article/10.1007/s10459-015-9645-6

ドット1
XNUMXつのリクエスト?

私はあなたに価値を提供するために、このブログ記事を書くことに多大な努力を払ってきました. ソーシャルメディアや友人/家族と共有することを検討していただければ、私にとって非常に役立ちます. 共有は♥️

エマ·スミス
エマ·スミス

Emma Smith は、アーバイン バレー カレッジで英語の修士号を取得しています。 彼女は 2002 年からジャーナリストとして、英語、スポーツ、法律に関する記事を書いています。 彼女についてもっと読む バイオページ.

13のコメント

    • はい、ディープラーニングは批判的思考を刺激します。これは生涯にわたる知識の保持に不可欠です。

  1. この投稿は、ディープラーニングとサーフェスラーニングの違いとその影響を強調するという点で示唆に富んでいます。

  2. ディープラーニングは確かに批判的思考と分析スキルを養い、主題の深い理解をサポートします。

  3. この記事では、ディープ ラーニングとサーフェス ラーニングを包括的に比較し、前者の重要性を強調します。

コメントを残す

あなたのメールアドレスは公開されません。 必須フィールドは、マークされています *

後で読むためにこの記事を保存しますか? 右下のハートをクリックして自分の記事ボックスに保存!