Интеллектуальный анализ данных против хранилища данных: разница и сравнение

Обычно используемые термины в мире цифрового маркетинга и информационных технологий, оба термина подразумевают, что данные являются важным и гибким активом, который необходимо хранить и анализировать для бизнес-тактик и генерации идей.

Это современные методы, используемые организациями и фондами для простоты интерпретации и доступности данных. Не только весь процесс требует точности, но также технических знаний и необходимого программного обеспечения.

Основные выводы

  1. Интеллектуальный анализ данных включает в себя извлечение ценной информации и шаблонов из больших наборов данных.
  2. Хранилище данных объединяет данные из разных источников в центральный репозиторий для анализа.
  3. Оба процесса поддерживают принятие решений на основе данных, но служат разным целям в управлении данными.

Интеллектуальный анализ данных против хранилища данных

Разница между интеллектуальным анализом данных и хранилищем данных заключается в том, что интеллектуальный анализ данных — это процесс анализа и извлечения данных, тогда как хранилище данных относится к процессу последовательного хранения данных после их извлечения из источников.

Интеллектуальный анализ данных против хранилища данных

Интеллектуальный анализ данных не является новой концепцией, изобретенной или практикуемой в эпоху кибербезопасности, но она использовалась еще в 1930-х годах для разделения полезных и бесполезных данных и файлов для облегчения доступа и применения.

Интеллектуальный анализ данных означает поиск связных и связанных следов данных из массива для анализа отзывов и требований клиентов в сфере бизнеса.

Интеллектуальный анализ данных является важным шагом в ТНК и организациях при управлении рисками, кризисной коммуникации, корпоративном анализе, оценке мошенничества и мерах безопасности.

Когда мы говорим «хранилище данных», мы, естественно, представляем себе хранилище, в котором данные хранятся и складываются последовательно, чтобы можно было легко подобрать любую часть данных в соответствии с требованиями.

Хранилище данных — это то же самое, и оно настолько просто, как следует из названия. А информационное хранилище извлекает информацию из нескольких источников, обеспечивая при этом качество, согласованность и правильность данных. 

Разделение обработки аналитики из международных баз данных в хранилище данных повышает производительность системы.

Сравнительная таблица

Параметры сравненияДобыча данныхХранилище данных
ОпределениеЭто относится к процессу извлечения соответствующих данных из скомпилированного набора хранимых данных. Интеллектуальный анализ данных используется для анализа и импровизации стратегий, выбранных организацией.Это процесс компиляции, упорядочивания и организации кластеров данных в одну общую доступную базу данных. Хранилище данных предназначено для поддержки руководства в принятии и реализации решений.
Использование и применениеВыполняется предпринимателями и владельцами бизнеса с помощью специалистов по обработке данных.Это важный процесс, выполняемый специалистами по информационным технологиям и техническими группами организации, занимающимися сбором данных. 
ЦельДля простоты информации и анализа данных.Чтобы сделать интеллектуальный анализ данных более простым и удобным. Сделано для сортировки и загрузки важных данных в базы данных.
Степень потериОн не всегда точен на 100% и может привести к утечке данных и пиратству, если не будет выполнен правильно.Может возникнуть высокая вероятность накопления неактуальных и бесполезных данных. Потеря данных и стирание данных также могут быть проблемой.
Промежуток времениДанные регулярно анализируются небольшими этапами, однако они могут различаться во время кризисной коммуникации.Данные загружаются периодически, и стекирование является обычной практикой для облегчения доступа при майнинге.

Что такое интеллектуальный анализ данных?

Интеллектуальный анализ данных — это важный шаг, принятый многонациональными компаниями (ТНК), бизнес-центрами и другими организациями для сбора данных, понимания отзывов и требований клиентов, а также импровизации, а также во время управления рисками.

Читайте также:  Сообщения против Сообщений Плюс: разница и сравнение

Проще говоря, интеллектуальный анализ данных — это процедура, выполняемая бизнес-структурами вместе с техническими специалистами для извлечения полезной информации и данных из сложенных хранилищ данных, а также информации с открытым исходным кодом из Интернета.

Это периодический процесс, которому следовали с момента зарождения торговли и коммерции.

Интеллектуальный анализ данных — это простой, но важный процесс, поскольку он доказал свою важность в периоды, когда организации требуются данные для анализа факторов, связанных с торговлей, и обзоров отзывов клиентов.

Интеллектуальный анализ данных также позволяет обнаруживать и устранять системные сбои, а также невостребованные данные, занимающие место в базе данных.

Вот некоторые важные особенности и аспекты интеллектуального анализа данных, которые делают его важным шагом в организации;

  1. Это позволяет автоматически анализировать шаблоны.
  2. Прогнозирование результатов и простое извлечение необходимых данных.
  3. Сосредоточен на источниках с похожими категориями, требуемыми пользователем.
  4. Полезная информация извлекается для удобства управления.
  5. Помогает в управлении финансами и является экономически эффективным методом.
добыча данных

Что такое хранилище данных?

Хранилище данных можно считать предшествующим этапом интеллектуального анализа данных, поскольку он помогает ускорить процесс интеллектуального анализа. Хранилище данных или ХД — это метод, при котором инженеры собирают данные и управляют ими в коллективных базах данных.

Эти базы данных содержат информацию из различных источников с различными категориями данных, включая аналитику, деловую тактику, стратегии и т. д.

 Хранилище данных чаще всего используется для интеграции и анализа корпоративных данных из разрозненных источников. Во время этого процесса наиболее важным элементом будет само хранилище, хранилище данных также называется DSS (система поддержки принятия решений).

Читайте также:  Etsy против eBay: разница и сравнение

DSS всегда отделен от функциональной и оперативной базы данных организации, поскольку хранилище данных — это не столько база данных, сколько ниша для анализа и хранения.

Хранилища данных в основном бывают трех типов с различными функциями каждого. Типы и их функции перечислены ниже;

  1. A Магазин данных: это прямой подэтап хранилища данных, который используется в сферах продаж и маркетинга. Независимая и самостоятельная витрина данных автоматически собирает данные из таких источников, как клиенты и рецензенты.
  2. Корпоративное хранилище данных (EDW): Единая и конкретная база данных, объединяющая все отделы организации. Это ядро ​​DSS.
  3. Хранилище оперативных данных (ODS): состоит из пользовательских данных и часто обновляется. Он действует и для сотрудников.
хранилище данных

Основные различия между интеллектуальным анализом данных и хранилищем данных

  1. Интеллектуальный анализ данных используется для анализа шаблонов и источников данных, а хранилища данных используются для анализа и хранения данных.
  2. Интеллектуальный анализ данных работает как операция извлечения, тогда как хранение данных работает по принципу объединения.
  3. Бизнес-предприниматели вместе с инженерами могут выполнять интеллектуальный анализ данных, но хранением данных занимаются только технические специалисты и инженеры.
  4. Интеллектуальный анализ данных в основном выполняется вручную, тогда как хранение данных может осуществляться с помощью ИИ и автоматических фильтров.
  5. Несколько типов методов интеллектуального анализа данных включают анализ классификации, обнаружение аномалий, кластеризации анализ и т. д., тогда как интеллектуальный анализ данных бывает 3 типов; киоск данных, EDW и ODS.
Разница между интеллектуальным анализом данных и хранилищем данных
Рекомендации
  1. https://www.talend.com/resources/what-is-data-mining/
  2. https://www.guru99.com/data-warehousing.html

Последнее обновление: 02 августа 2023 г.

точка 1
Один запрос?

Я приложил столько усилий, чтобы написать этот пост в блоге, чтобы предоставить вам ценность. Это будет очень полезно для меня, если вы подумаете о том, чтобы поделиться им в социальных сетях или со своими друзьями/родными. ДЕЛИТЬСЯ ♥️

24 мысли о «Интеллектуальный анализ данных и хранилище данных: разница и сравнение»

  1. Статья предлагает всестороннее понимание интеллектуального анализа и хранения данных, проливая свет на их назначение, использование и значение в организациях.

    Ответить
    • Я согласен. Он эффективно иллюстрирует, как хранилища данных поддерживают процесс интеллектуального анализа данных и их совокупное влияние на принятие бизнес-решений.

      Ответить
  2. Отличная статья! Очень полезно понять разницу между интеллектуальным анализом данных и хранилищем данных, а также то, как оба они используются в современном бизнесе для управления и анализа данных.

    Ответить
  3. Подробная сравнительная таблица предлагает полный обзор интеллектуального анализа данных и хранилищ данных, подчеркивая их отличительные особенности и функциональные возможности в рамках организационной структуры.

    Ответить
    • Представленная информация полезна для понимания различных последствий интеллектуального анализа данных и хранилищ данных, а также того, как они поддерживают принятие решений на основе данных.

      Ответить
  4. Углубленное сравнение интеллектуального анализа данных и хранилищ данных, а также их соответствующих функций является ценным ресурсом для профессионалов, желающих понять эти концепции.

    Ответить
    • Я нашел особенно полезным акцент на важности отделения аналитической обработки от международных баз данных в контексте хранилищ данных.

      Ответить
    • Безусловно, в статье представлен хорошо структурированный анализ этих концепций, что облегчает понимание того, как они способствуют эффективному управлению данными.

      Ответить
  5. Акцент в статье на значении и влиянии интеллектуального анализа и хранения данных в бизнес-операциях улучшает понимание их практического применения в современных организациях.

    Ответить
    • Я нашел объяснение временных интервалов, связанных с интеллектуальным анализом и хранением данных, особенно поучительным и проливающим свет на временные аспекты этих процессов.

      Ответить
    • Безусловно, подробное обсуждение их назначения и использования дает ценную информацию о значении этих методологий для эффективного управления данными.

      Ответить
  6. В статье эффективно подчеркивается значение и влияние интеллектуального анализа данных и хранилищ данных в современных организациях. Я оценил подробное объяснение их применения и преимуществ.

    Ответить
    • Я полностью согласен. Всесторонний обзор интеллектуального анализа данных и хранилищ данных подчеркивает их важнейшую роль в поддержке процессов принятия решений в бизнесе.

      Ответить
    • Содержание дает ценную информацию о том, как эти методологии способствуют стратегиям, основанным на данных, и их роли в управлении рисками и оценке мошенничества.

      Ответить
  7. Информационная штука! Содержание эффективно отражает важность и функциональность интеллектуального анализа и хранения данных в рамках бизнес-операций.

    Ответить
  8. В статье эффективно сформулированы концепции интеллектуального анализа данных и хранилищ данных, подчеркивая роль каждого из них в поддержке бизнес-операций и принятии стратегических решений.

    Ответить
    • Подробное объяснение цели и степени потерь, связанных с интеллектуальным анализом и хранением данных, дает ценную информацию об их последствиях для организаций.

      Ответить
    • Я нашел иллюстрации конкретных приложений интеллектуального анализа и хранения данных особенно показательными, подчеркивающими их решающую роль в современном бизнесе.

      Ответить
  9. Сравнительная таблица очень информативна. В нем четко очерчены различия в целях, использовании и сроках между интеллектуальным анализом данных и хранилищем данных, что обеспечивает полное понимание обоих процессов.

    Ответить
    • Я обнаружил, что таблица чрезвычайно полезна для обобщения ключевых различий между этими двумя важнейшими компонентами управления данными.

      Ответить
    • Безусловно, сравнительная таблица облегчает понимание нюансов интеллектуального анализа и хранения данных в бизнес-контексте.

      Ответить
  10. Подробное объяснение хранилищ и интеллектуального анализа данных, а также их конкретных применений делает эту статью ценным ресурсом для понимания роли данных в бизнес-среде.

    Ответить
    • Я нашел представленную информацию весьма поучительной, и очевидно, как эти методологии способствуют эффективному управлению данными.

      Ответить

Оставьте комментарий

Хотите сохранить эту статью на потом? Нажмите на сердечко в правом нижнем углу, чтобы сохранить в свой собственный блок статей!