Совместное использование заботу!

Основные выводы

  1. Генеративный ИИ — это разновидность искусственного интеллекта, ориентированная на создание данных, а не просто на анализ существующей информации.
  2. Прогнозирующий ИИ — это подмножество ИИ, которое фокусируется на прогнозировании будущих событий или тенденций на основе исторических данных или закономерностей.
  3. Основная цель генеративного ИИ — создавать новые данные, будь то изображения, текст или другой контент. Напротив, прогнозирующий ИИ, с другой стороны, стремится делать прогнозы и прогнозы на основе существующих данных.

Что такое Генеративный ИИ?

Генеративный ИИ — это разновидность искусственного интеллекта, ориентированная на создание данных, а не просто на анализ или обработку существующей информации. Он использует методы глубокого обучения для создания нового контента, такого как изображения, тесты, музыка и т. д.

Суть генеративного ИИ лежит в состязательном аспекте. Он состоит из двух нейронных сетей — генератора и дискриминатора, которые работают противоположно. Роль генератора — создание данных, а задача дискриминатора — определить, являются ли данные точными или сгенерированными.

Он имеет широкий спектр применения. В искусстве его используют для создания уникальных музыкальных, художественных или литературных произведений. Он используется в видеоиграх для создания ландшафтов и персонажей.

Что такое прогнозирующий ИИ?

Прогнозирующий ИИ — это подмножество ИИ, которое фокусируется на прогнозировании будущих событий или тенденций на основе исторических данных и закономерностей. Это имеет решающее значение в различных приложениях, от финансовых рынков до здравоохранения и управления цепочками поставок.

Читайте также:  NTLM против Kerberos: разница и сравнение

В прогнозирующем ИИ модели машинного обучения обучаются на обширных наборах данных для распознавания закономерностей и составления прогнозов. В системе здравоохранения прогнозирующий ИИ может предсказывать вспышки заболеваний, исходы пациентов и вероятность повторной госпитализации.

Однако у прогнозирующего ИИ есть проблемы. Обеспечение качества данных и предотвращение систематических ошибок в обучающих данных имеют решающее значение. Также необходимо учитывать этические соображения, касающиеся конфиденциальности и ответственного использования прогнозирующего ИИ.

Разница между генеративным ИИ и прогнозирующим ИИ

  1. Основная цель генеративного ИИ — создавать новые данные, будь то изображения, текст или другой контент. Напротив, прогнозирующий ИИ, с другой стороны, стремится делать прогнозы и прогнозы на основе существующих данных.
  2. Генеративному ИИ требуется набор обучающих данных для изучения шаблонов, но он даже не полагается на прогнозирование будущих событий. Напротив, прогнозирующий ИИ в значительной степени полагается на исторические данные для обучения и на основе этих данных делает прогнозы о будущих событиях или тенденциях.
  3. Генеративный ИИ обычно используется в таких приложениях, как генерация изображений, генерация текста и создание творческого контента. В то же время прогнозирующий ИИ применяется в таких областях, как финансы для прогнозирования цен на акции, здравоохранение для прогнозирования вспышек заболеваний, управление цепочками поставок для прогнозирования спроса и системы рекомендаций для предложения продуктов.
  4. Генеративному ИИ требуется разнообразный набор данных, отражающий тип контента, который он призван генерировать. В то же время прогнозирующему ИИ необходимы исторические, структурированные данные с соответствующими функциями для построения точных прогнозных моделей.
  5. Генеративный искусственный интеллект предлагает ценность для создания творческого контента, дизайна и моделирования, используемого в индустрии развлечений и искусства. В то же время прогнозирующий ИИ приносит пользу, помогая организациям принимать решения на основе данных, предвидеть рыночные тенденции, оптимизировать операции и повышать удобство работы пользователей.
Читайте также:  Как заблокировать ваш номер и идентификатор вызывающего абонента: для тех, кто ищет конфиденциальность

Сравнение генеративного и прогнозирующего ИИ

параметрыГенеративный ИИПрогнозирующий ИИ
Главная цельСоздавайте новые данные в виде изображений или текста.Целью является составление прогнозов и прогнозов на основе существующих данных.
Использование данныхТребуются данные обучения для моделей обучения.Во многом полагается на исторические данные
ПриложенияНапример, создание изображений, текста и создание творческого контента.Финансы, управление цепочками поставок и здравоохранение
Требования к даннымРазнообразный набор данныхТребуются исторические данные
Ценность предложенияВ дизайне и моделировании, используется в индустрии развлечений и искусства.Помогая организациям принимать решения на основе данных и повышать удобство работы пользователей.
Рекомендации
  1. https://arxiv.org/abs/2301.04655
  2. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4375283
точка 1
Один запрос?

Я приложил столько усилий, чтобы написать этот пост в блоге, чтобы предоставить вам ценность. Это будет очень полезно для меня, если вы подумаете о том, чтобы поделиться им в социальных сетях или со своими друзьями/родными. ДЕЛИТЬСЯ ♥️

Хотите сохранить эту статью на потом? Нажмите на сердечко в правом нижнем углу, чтобы сохранить в свой собственный блок статей!

By Сандип Бхандари

Сандип Бхандари имеет степень бакалавра вычислительной техники Университета Тапар (2006 г.). Имеет 20-летний опыт работы в сфере технологий. Он проявляет большой интерес к различным техническим областям, включая системы баз данных, компьютерные сети и программирование. Подробнее о нем можно прочитать на его био страница.