Database vs Data Warehouse: Perbedaan dan Perbandingan

Basis data adalah kumpulan data terstruktur yang diorganisasikan untuk pengambilan, penyimpanan, dan pengelolaan yang efisien, yang digunakan untuk pemrosesan transaksional. Di sisi lain, gudang data adalah repositori terpusat yang mengintegrasikan data dari berbagai sumber untuk mendukung pelaporan analitis, proses kueri, dan pengambilan keputusan, yang dioptimalkan untuk kueri dan analisis data yang kompleks, dengan fokus pada data historis dan agregat.

Pengambilan Kunci

  1. Database menyimpan dan mengelola data operasional saat ini; gudang data mengkonsolidasikan data historis dan analitis untuk pengambilan keputusan.
  2. Database mendukung pemrosesan transaksional (OLTP); gudang data memfasilitasi pemrosesan analitik (OLAP).
  3. Database dioptimalkan untuk pengambilan dan pembaruan data yang cepat; gudang data dirancang untuk kueri dan pelaporan yang efisien pada kumpulan data besar.

Basis Data vs Gudang Data

Perbedaan antara Basis Data dan Data Warehouse adalah bahwa Database digunakan untuk merekam data atau informasi, sedangkan Data Warehouse terutama digunakan untuk analisis data.

Quiche vs Souffle 37

Namun, perbedaan di atas bukanlah satu-satunya. Perbandingan antara kedua istilah pada parameter tertentu dapat menjelaskan aspek halus:


 

Tabel perbandingan

FiturBasis DataGudang data
Fungsi utamaMenyimpan dan mengelola data untuk operasi sehari-hariAnalisis data historis untuk mengetahui tren dan wawasan
Struktur dataDioptimalkan untuk pengambilan dan modifikasi cepat (CRUD – Buat, Baca, Perbarui, Hapus)Dioptimalkan untuk kueri dan analisis yang kompleks (OLAP – Pemrosesan Analitik Online)
Mata Uang DataTerutama data terkiniUtamanya data historis dan terintegrasi dari berbagai sumber
SkemaSangat dinormalisasi untuk meminimalkan redundansiSering didenormalisasi untuk meningkatkan kinerja kueri untuk analisis
PembaruanPembaruan yang sering dilakukan saat transaksi terjadiPembaruan berkala (pemrosesan batch)
penggunaAplikasi operasional, pengguna individuAnalis bisnis, ilmuwan data, eksekutif
SecurityBerfokus pada integritas data dan kontrol akses untuk pengguna tertentuBerfokus pada tata kelola data dan kontrol akses untuk tujuan analitis
KompleksitasLebih sederhana untuk dirancang dan dikelolaLebih kompleks untuk dirancang, diimplementasikan, dan dipelihara karena integrasi dan transformasi data
BiayaBiaya lebih rendah karena ukurannya yang lebih kecil dan infrastruktur yang lebih sederhanaBiaya lebih tinggi karena kebutuhan penyimpanan dan kekuatan pemrosesan yang lebih besar
Sematkan Ini Sekarang untuk Mengingatnya Nanti
Sematkan Ini

 

Apa itu Database?

Komponen Basis Data:

  1. Tanggal: Komponen inti dari database, yang mencakup informasi aktual yang tersimpan di dalamnya. Data dapat terstruktur, semi terstruktur, atau tidak terstruktur, bergantung pada kebutuhan spesifik sistem database.
  2. Sistem Manajemen Basis Data (DBMS): Perangkat lunak yang bertanggung jawab untuk mengelola database. Ini memfasilitasi interaksi dengan database, termasuk penyisipan data, pengambilan, pembaruan, dan penghapusan. DBMS populer termasuk MySQL, PostgreSQL, Oracle, SQL Server, dan MongoDB, masing-masing menawarkan berbagai fitur dan kemampuan.
  3. Skema: Mendefinisikan struktur dan organisasi data dalam database. Ini mencakup tabel, bidang, tipe data, hubungan, batasan, dan spesifikasi lain yang mengatur bagaimana data disimpan dan diakses.
  4. Pertanyaan: Perintah yang digunakan untuk mengambil, memanipulasi, dan mengelola data dalam database. Kueri ditulis dalam bahasa kueri tertentu yang didukung oleh DBMS, seperti SQL (Structured Query Language), yang banyak digunakan untuk database relasional.
Baca Juga:  WML vs HTML: Perbedaan dan Perbandingan

Jenis Basis Data:

  1. Basis Data Relasional: Atur data ke dalam tabel dengan baris dan kolom, buat hubungan antara entitas yang berbeda. Mereka mematuhi prinsip ACID (Atomicity, Consistency, Isolation, Durability) untuk memastikan integritas dan keandalan data. Contohnya termasuk MySQL, PostgreSQL, SQL Server, dan Oracle Database.
  2. Basis Data NoSQL: Dirancang untuk menangani data tidak terstruktur atau semi terstruktur dalam jumlah besar dengan fleksibilitas dan skalabilitas. Mereka berangkat dari struktur kaku database relasional dan menawarkan berbagai model data, seperti database berorientasi dokumen, nilai kunci, kolom, dan grafik. Contohnya termasuk MongoDB, Cassandra, Couchbase, dan Redis.
  3. Basis Data SQL Baru: Bertujuan untuk menggabungkan manfaat database relasional tradisional dengan skalabilitas dan fleksibilitas solusi NoSQL. Mereka menyediakan arsitektur terdistribusi dan peningkatan kinerja dengan tetap menjaga kepatuhan ACID. Basis data NewSQL menargetkan skenario yang memerlukan skalabilitas tinggi dan integritas transaksional, seperti aplikasi e-commerce dan keuangan.

Kegunaan Database:

  1. Pemrosesan Transaksional: Menangani operasi bisnis sehari-hari, seperti transaksi online, manajemen inventaris, dan manajemen hubungan pelanggan (CRM).
  2. Pemrosesan Analitik: Melakukan pertanyaan kompleks, analisis data, dan menghasilkan laporan untuk mendukung proses pengambilan keputusan. Gudang data dan basis data analitis dirancang khusus untuk tujuan ini, mengumpulkan dan memproses data dari berbagai sumber untuk intelijen bisnis dan analisis data.
  3. Manajemen Konten: Menyimpan dan mengelola konten digital, seperti dokumen, gambar, video, dan halaman web, dalam sistem manajemen konten (CMS) dan database berorientasi dokumen.
Database
 

Apa itu Gudang Data?

Komponen Gudang Data:

  1. Proses Ekstrak, Transformasi, Muat (ETL): Proses ETL bertanggung jawab untuk mengekstraksi data dari berbagai sistem sumber, mengubahnya menjadi format yang konsisten, dan memuatnya ke dalam gudang data. Proses ini melibatkan pembersihan, pengumpulan, dan restrukturisasi data untuk memastikan konsistensi dan kualitas.
  2. Penyimpanan data: Gudang data menyimpan data historis terstruktur dalam format yang dioptimalkan untuk kueri dan pelaporan analitis. Gudang data menggunakan model dimensional, yang terdiri dari tabel fakta dan tabel dimensi, untuk mengatur data dengan cara yang memfasilitasi analisis multidimensi.
  3. Repositori Metadata: Metadata, atau data tentang data, memainkan peran penting dalam gudang data. Ini mencakup informasi tentang sistem sumber, transformasi data, definisi data, dan hubungan antara elemen data yang berbeda. Repositori metadata memusatkan informasi ini, memberikan konteks berharga untuk memahami dan menafsirkan data yang disimpan di gudang.
  4. Mesin OLAP (Pemrosesan Analitik Online): Mesin OLAP memungkinkan pengguna untuk melakukan analisis multidimensi kompleks terhadap data yang disimpan di gudang. Mereka mendukung operasi seperti pemotongan, pemotongan, penelusuran, dan penggulungan data untuk mengeksplorasi tren, pola, dan hubungan di berbagai dimensi.
Baca Juga:  Avast One vs Avast Premium Security: Perbedaan dan Perbandingan

Jenis Gudang Data:

  1. Gudang Data Perusahaan (EDW): EDW berfungsi sebagai tempat penyimpanan komprehensif untuk data terintegrasi dari seluruh organisasi. Ini mengkonsolidasikan data dari berbagai sistem dan departemen operasional, memberikan pandangan terpadu tentang data organisasi untuk pengambilan keputusan strategis.
  2. Pasar Data: Data mart adalah bagian dari gudang data perusahaan, yang berfokus pada fungsi bisnis, departemen, atau kelompok pengguna tertentu. Data mart dirancang untuk memenuhi kebutuhan pelaporan dan analisis unik dari audiens target mereka, memberikan pendekatan yang lebih disesuaikan dan efisien terhadap akses dan analisis data.
  3. Penyimpanan Data Operasional (ODS): ODS adalah database yang mengintegrasikan data dari berbagai sistem operasional hampir secara real-time. Meskipun tidak sepenuhnya merupakan gudang data, ODS berfungsi sebagai area pementasan untuk data operasional sebelum diproses lebih lanjut dan dimuat ke dalam gudang data untuk tujuan analitis.

Kegunaan Gudang Data:

  1. Intelijen Bisnis (BI): Gudang data adalah komponen penting dari inisiatif intelijen bisnis, yang memberikan landasan untuk pelaporan, dasbor, dan analisis ad-hoc. Dengan menggabungkan data dari sumber yang berbeda, gudang data memungkinkan organisasi memperoleh wawasan tentang operasi, kinerja, dan tren bisnis mereka.
  2. Pendukung keputusan: Gudang data mendukung proses pengambilan keputusan dengan menyediakan informasi yang tepat waktu, akurat, dan relevan kepada pengguna bisnis dan pengambil keputusan. Dengan menganalisis data historis dan terkini, organisasi dapat mengidentifikasi pola, tren, dan penyimpangan untuk menginformasikan keputusan strategis dan mendorong kesuksesan bisnis.
  3. Analisis Prediktif: Gudang data berfungsi sebagai sumber daya berharga untuk analisis prediktif, memungkinkan organisasi memperkirakan tren, perilaku, dan hasil di masa depan berdasarkan data historis. Dengan memanfaatkan teknik analitik tingkat lanjut dan algoritme pembelajaran mesin, organisasi dapat mengungkap wawasan tersembunyi dan membuat prediksi berdasarkan data untuk memandu strategi bisnis mereka.
data warehouse

Perbedaan Utama Antara Basis Data dan Gudang Data

  1. Tujuan:
    • Database: Terutama digunakan untuk pemrosesan transaksional, dengan fokus pada penyimpanan, pengambilan, dan pengelolaan data operasional secara real-time.
    • Gudang data: Dirancang untuk pemrosesan analitis, menggabungkan data dari berbagai sumber untuk mendukung proses pelaporan, kueri, dan pengambilan keputusan.
  2. Struktur data:
    • Database: Biasanya mengatur data dalam format yang dinormalisasi untuk meminimalkan redundansi dan memastikan integritas data, cocok untuk operasi transaksional.
    • Gudang data: Memanfaatkan model yang dinormalisasi atau berdimensi untuk mengoptimalkan pengambilan dan analisis data, memfasilitasi kueri kompleks dan analisis multidimensi.
  3. Pemakaian:
    • Database: Ideal untuk operasi sehari-hari, seperti transaksi online, manajemen inventaris, dan interaksi pelanggan.
    • Gudang data: Digunakan untuk pengambilan keputusan strategis, intelijen bisnis, dan analisis data, memungkinkan pengguna menganalisis data historis dan memperoleh wawasan untuk pengambilan keputusan yang tepat.
  4. Integrasi data:
    • Database: Mungkin berisi data dari satu sumber atau aplikasi, dengan fokus pada pemrosesan data real-time dalam domain operasional tertentu.
    • Gudang data: Mengintegrasikan data dari berbagai sumber di seluruh organisasi, termasuk sistem operasional, sumber eksternal, dan sistem lama, memberikan pandangan terpadu tentang data perusahaan untuk tujuan analitis.
  5. Optimasi Kinerja:
    • Database: Dioptimalkan untuk kinerja transaksional, menekankan kontrol konkurensi, manajemen transaksi, dan konsistensi data.
    • Gudang data: Dioptimalkan untuk kinerja analitis, mendukung kueri kompleks, agregasi, dan analisis multidimensi untuk memfasilitasi dukungan keputusan dan inisiatif intelijen bisnis.
  6. Model data:
    • Database: Biasanya menggunakan model relasional dengan tabel yang dinormalisasi, menekankan konsistensi data, integritas, dan integritas referensial.
    • Gudang data: Memanfaatkan model dimensi dengan tabel fakta dan tabel dimensi, dengan fokus pada pengorganisasian data untuk kueri dan analisis yang efisien di berbagai dimensi dan metrik.
Baca Juga:  Jetpack vs Google Analytics: Perbedaan dan Perbandingan
Perbedaan Antara Basis Data dan Gudang Data
Referensi
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc2233405/
  2. https://bmcbioinformatic
Satu permintaan?

Saya telah berusaha keras menulis posting blog ini untuk memberikan nilai kepada Anda. Ini akan sangat membantu saya, jika Anda mempertimbangkan untuk membagikannya di media sosial atau dengan teman/keluarga Anda. BERBAGI ADALAH ️

Ingin menyimpan artikel ini untuk nanti? Klik hati di pojok kanan bawah untuk menyimpan ke kotak artikel Anda sendiri!

Tentang Penulis

Chara Yadav memegang gelar MBA di bidang Keuangan. Tujuannya adalah untuk menyederhanakan topik terkait keuangan. Dia telah bekerja di bidang keuangan selama sekitar 25 tahun. Dia telah mengadakan beberapa kelas keuangan dan perbankan untuk sekolah bisnis dan komunitas. Baca lebih lanjut tentang dia halaman bio.