アルファおよびベータ受容体は、交感神経系に見られるアドレナリン作動性受容体の一種です。 α1 および α2 にサブタイプ化されるアルファ受容体は、血管収縮、瞳孔拡張、および平滑筋収縮を媒介します。 β1、β2、β3に細分されるβ受容体は、心拍数、気管支拡張、グリコーゲン分解を制御します。
主なポイント
- アルファ受容体は血管収縮と血圧上昇の原因であり、ベータ受容体は血管拡張と血圧低下の原因です。
- アルファ受容体は主に血管の平滑筋細胞に見られ、ベータ受容体は主に心臓と肺に見られます。
- アルファ受容体はホルモンのエピネフリンによって刺激され、ベータ受容体はエピネフリンとノルエピネフリンの両方によって刺激されます。
アルファ受容体とベータ受容体
アルファ受容体は、エピネフリンとノルエピネフリンを放出し、平滑筋の収縮に関与するアドレナリン受容体細胞の一種です。 ベータ受容体は別の種類のアドレナリン受容体細胞であり、心臓、肺、子宮の筋肉の弛緩を助けます。

アルファ受容体は、XNUMX つのタイプのうちの XNUMX つです。 アドレナリン作動性 受容体。それらは再び、Alpha1 受容体と Alpha2 受容体に細分されます。これらの受容体は、動脈上、または内臓の血管収縮における交感神経効果器のシナプス後領域に位置しています。
ベータ受容体は、私たちの臓器のシナプス後部に位置する別のタイプのアドレナリン受容体です。 これらの受容体は、再び Beta1、Beta2、および Beta3 受容体に細分されます。
これらのベータ受容体が活性化されると、私たちの体の筋肉が弛緩します。 これらの受容体の共通の活動は、心拍数の増加、脂肪分解、レニン放出です。
比較 表
機能 | アルファ受容体 | ベータ受容体 |
---|---|---|
タイプ | Gタンパク質共役型受容体(GPCR) | Gタンパク質共役型受容体(GPCR) |
サブタイプ | α1、α2 | β1、β2、β3 |
会社名 | 平滑筋、血管、肝臓、中枢神経系 | 心臓、肺、血管、肝臓、脂肪組織 |
シグナル伝達経路 | Gタンパク質はサブタイプに応じてさまざまな下流経路を活性化します | Gタンパク質はサブタイプに応じてさまざまな下流経路を活性化します |
エフェクト | 一般的な原因 収縮 (例、平滑筋収縮、血管収縮)および 阻害 いくつかの細胞プロセスの | 一般的な原因 緩和 (例、平滑筋弛緩、気管支拡張)および 刺激 いくつかの細胞プロセスの |
リガンドの例 | エピネフリン (アドレナリン)、ノルアドレナリン (ノルアドレナリン)、フェニレフリン | エピネフリン、ノルエピネフリン、イソプロテレノール、サルブタモール(アルブテロール) |
治療用途 | 充血除去剤、血圧薬 | 喘息治療薬、心不全治療薬、気管支拡張薬 |
アルファ受容体とは何ですか?
アルファ受容体は、主に交感神経系の生理学的反応に関与するアドレナリン受容体の一種です。それらは、血管の緊張、平滑筋の収縮、神経伝達物質の放出など、さまざまな身体機能の調節において重要な役割を果たします。アルファ受容体は、さらに 1 つの主要なサブタイプ、α2 と αXNUMX に細分されます。
α-1 受容体
α-1 受容体は主に、血管、胃腸管、膀胱の平滑筋細胞など、さまざまな組織のエフェクター細胞のシナプス後部に存在します。 α-1 受容体が刺激されると血管収縮が仲介され、血圧の上昇と瞳孔の拡張 (散瞳) が引き起こされます。膀胱の平滑筋細胞上のアルファ-1 受容体の活性化により収縮が生じ、尿閉の原因となります。
α-2 受容体
α-2 受容体は主に神経終末のシナプス前に位置し、ノルエピネフリンやその他の神経伝達物質を含む神経伝達物質の放出を調節します。それらは、特定のエフェクター細胞のシナプス後位置にも存在します。 α-2 受容体の活性化は神経伝達物質放出の阻害につながり、その結果、交感神経流出の減少、インスリン放出の阻害、血小板凝集の調節などのさまざまな影響が生じます。 α-2 受容体は、交感神経終末からのノルエピネフリン放出の負のフィードバック阻害を媒介することにより、血圧の調節にも役割を果たします。
ベータ受容体とは何ですか?
ベータ受容体は、交感神経系の生理学的反応の仲介において重要な役割を果たすアドレナリン受容体の一種です。それらは心拍数の調節、気管支拡張、グリコーゲン分解、その他の代謝プロセスに関与しています。ベータ受容体は、β1、β2、β3 の XNUMX つの主要なサブタイプにさらに分類されます。
ベータ 1 受容体
ベータ 1 受容体は主に心臓、特に洞房 (SA) 結節、心房、および心室に存在します。刺激されると、ベータ 1 受容体は心拍数を増加させ (正の変調効果)、心筋収縮性を高め (正の変力効果)、房室伝導を促進します (正の変調効果)。エピネフリンやノルエピネフリンなどのカテコールアミンによるベータ 1 受容体の活性化は、心拍出量の全体的な増加につながります。これは、ストレスに応答し、適切な組織灌流を維持するために重要です。
ベータ 2 受容体
ベータ 2 受容体は主に、肝細胞や骨格筋細胞だけでなく、細気管支、血管、子宮の平滑筋細胞にも存在します。ベータ 2 受容体の刺激は、気管支拡張、骨格筋と肝臓の血管拡張、子宮平滑筋の弛緩、肝臓のグリコーゲン分解と糖新生の促進をもたらします。これらの効果は、気道の直径を拡大し、運動する筋肉への血流を改善し、ストレスや身体活動中にエネルギー生産のためにブドウ糖を動員するために不可欠です。
ベータ 3 受容体
ベータ 3 受容体は主に脂肪組織と膀胱に存在します。ベータ 3 受容体の活性化により脂肪分解が促進され、脂肪細胞から遊離脂肪酸が放出されます。さらに、膀胱平滑筋におけるベータ 3 受容体の活性化は弛緩に寄与し、膀胱の排出を促進します。
アルファ受容体とベータ受容体の主な違い
- 会社名:
- アルファ受容体は主に、血管、平滑筋細胞、特定の腺などの末梢組織に存在します。
- ベータ受容体は、心臓、細気管支、血管、脂肪組織、膀胱などのさまざまな組織に存在します。
- エフェクト:
- アルファ受容体の活性化は、血管収縮、瞳孔拡張、平滑筋収縮、神経伝達物質放出の阻害を引き起こします。
- ベータ受容体の活性化は、心拍数の増加、気管支拡張、特定の組織の血管拡張、脂肪分解、グリコーゲン分解、膀胱や子宮の平滑筋の弛緩を引き起こします。
- リガンドに対する反応:
- アルファ受容体は主にノルエピネフリンによって活性化され、程度は低いですがエピネフリンによって活性化されます。
- ベータ受容体はエピネフリンとノルエピネフリンの両方によって活性化され、サブタイプ(β1、β2、β3)ごとに異なる親和性を示します。
- 生理機能:
- アルファ受容体は、血管収縮や血圧上昇などの「闘争または逃走」反応に関連する反応を仲介します。
- ベータ受容体は、心血管機能、呼吸機能、代謝プロセス、およびさまざまな組織の平滑筋弛緩を調節します。